Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.

نویسندگان

  • E B Van Munster
  • G J Kremers
  • M J W Adjobo-Hermans
  • T W J Gadella
چکیده

Fluorescence resonance energy transfer (FRET) is an extremely effective tool to detect molecular interaction at suboptical resolutions. One of the techniques for measuring FRET is acceptor photobleaching: the increase in donor fluorescence after complete acceptor photobleaching is a measure of the FRET efficiency. However, in wide-field microscopy, complete acceptor photobleaching is difficult due to the low excitation intensities. In addition, the method is sensitive to inadvertent donor bleaching, autofluorescence and bleed-through of excitation light. In the method introduced in this paper, donor and acceptor intensities are monitored continuously during acceptor photobleaching. Subsequently, curve fitting is used to determine the FRET efficiency. The method was demonstrated on cameleon (YC2.1), a FRET-based Ca(2+) indicator, and on a CFP-YFP fusion protein expressed in HeLa cells. FRET efficiency of cameleon in the presence of 1 mm Ca(2+) was 31 +/- 3%. In the absence of Ca(2+) a FRET efficiency of 15 +/- 2% was found. A FRET efficiency of 28% was found for the CFP-YFP fusion protein in HeLa cells. Advantages of the method are that it does not require complete acceptor photobleaching, it includes correction for spectral cross-talk, donor photobleaching and autofluorescence, and is relatively simple to use on a normal wide-field microscope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements.

Fluorescence resonance energy transfer (FRET) efficiency measurements based on acceptor photobleaching of yellow fluorescent protein (YFP) are affected by the fact that bleaching of YFP produces a fluorescent species that is detectable in cyan fluorescent protein (CFP) image channels. The presented quantitative measurement of this conversion makes it possible to correct the obtained FRET signal...

متن کامل

Rational design and evaluation of FRET experiments to measure protein proximities in cells.

Fluorescence resonance energy transfer (FRET) refers to the nonradiative transfer of energy from one fluorescent molecule (the donor) to another fluorescent molecule (the acceptor). Measurement of FRET between two fluorophore-labeled proteins can be used to infer the subnanometer spatial and temporal characteristics of protein interactions in their native cellular environment. Multiple experime...

متن کامل

Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy.

The determination of cellulase distribution on the surface of cellulose fiber is an important parameter to understand when determining the interaction between cellulase and cellulose and/or the cooperation of different types of cellulases during the enzymatic hydrolysis of cellulose. In this communication, a strategy is presented to quantitatively determine the cellulase colocalization using th...

متن کامل

Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching.

Fluorescence resonance energy transfer (FRET) is a technique used for the study of functional interactions between molecules. The intimate vicinity between two fluorescent molecules (FRET-pair; donor and acceptor) allows for an energy transfer, which can be directly calculated as the so called FRET efficiency. This technique is used in fixed as well as living cells. Here we show first, measured...

متن کامل

FLAP, FRET and FLIM

Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microscopy

دوره 218 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005